手机浏览器扫描二维码访问
“别走!”拉塞尔教授大声叫住程诺,来都来了,还岂能让你溜了。我的那点颜面,可都全指望你了。
他笑吟吟的道,“这位先生,从外表来看,我就觉得你有学习数学的天分。我认识一位朋友,有天纵之资,便师从菲涅尔教授,我觉得,有机会的话,你也可以辞去服务员的身份,去麻省理工学院求师菲涅尔教授。”
“我想你的未来,一定会想菲涅尔教授那位学生一样,对吧?只可惜,我的那位朋友没来到这届大会,有机会的话,可以让你们认识一下。”
程诺面色一黑。
拉塞尔教授这是在威胁自己啊,一旦他不帮忙救场,就会将程诺的身份公之于众。
殊不知,就算程诺救场话,这里他也待不下去了。
程诺的目光对视上台上拉塞尔教授笑眯眯的眼神,嘴角轻轻一弯。
既然如此,那便如你所愿。只不过,希望你不要后悔才好。
程诺倒不着急了,慢悠悠的走回原本的座位,笑着开口,“学生这里确实有一处疑惑,需要拉塞尔先生的解答。”
拉塞尔面色一缓,轻松的道,“请讲。”
二十多位观众也是竖起耳朵,看看这位服务生究竟能问出什么“高深”的问题。
程诺脑海里过了一遍拉塞尔演讲的内容,淡淡一笑,“通过研究定义于有限域fq上的代数簇x的zeta函数zx(t)和ζx曲线和阿贝尔簇的情况下,zx(t)满足两个性质:
1:zx(t)是有理函数
2:满足函数方程
我用这一句话来概括拉塞尔教授讲座的内容,应该没有问题吧?”
在二十多位或不解,或疑惑的目光中,拉塞尔教授缓缓点头。
“不错,可以这样理解。”拉塞尔早就见识过程诺的实力,因此对他一句话总结,倒没有任何的惊讶。
“请继续。”拉塞尔示意程诺。
程诺颔首,继续说道,“前半部分的内容,我是比较认同的,但是对于zx(t)满足的性质,我有不同的观点。”
“除了zx(t)是有理函数和满足函数方程外,我个人认为,还有另一个性质zx(t)函数的零点,有某种特性的形式!”
“零点有某种特定的形式?”拉塞尔教授嘀咕一句,思考了一两秒中,抬头问道,“你为什么这么认为?”
程诺抬抬手,示意拉塞尔教授稍安勿躁,“等我讲完再解释。”
“除了上面那处疑惑外,我还有和拉塞尔先生另一个不同的观点。讲座中是说,上面的两个,呃,暂且算是三个,那三个性质只适用于曲线和阿贝尔簇两种情况下。”
“那这个勉强算是定理的东西,适用的条件太过于苛刻,实用性几乎为零。但如果我们把这个定理扩展到整个非奇异代数簇的zata函数上,那普遍性和实用价值大大提高。那……”
“不可能!”拉塞尔教授直接打断了程诺。
“这三个性质的得出,是依靠研究有限域fq上的代数簇x的zeta函数zx(t)和ζx(s),对应的就是曲线和阿尔贝簇,怎么能得出一个普遍性的结论出来?”拉塞尔教授大声道。
程诺语气不急不缓,“没验证过,怎么知道不能?”
“那你证明出来了?”拉塞尔问。“没有理论依据,就不要做这种异想天开的假设!”
程诺耸肩,咧嘴笑道,“不巧,我还真证明出来了。”
(大雁文学WwW.XiaoYanWenXue.CoM)
华夏最强大的特种部队执法者的高手沧龙被人陷害而死,灵魂重生在一个纨绔风流公子哥身上,从此开启一段不一样的都市之旅。美酒在手!美人在怀!天下在胸!...
前世的平安被身边人算计和出卖,落得惨死下场重生后她只想快意恩仇地活一次,从学渣逆袭成学霸,炒股炒房赚大钱,顺便斗斗极品亲戚,捉弄傲娇学霸校草,把前世踩她的人都纷纷踩至脚下。春风得意之时不料半路杀出个无敌兵哥哥,将门虎子不说,人帅嘴甜活好还不粘人,除了有点性急。...
千年前,天辰大陆最惊艳的天才意外陨落,千年后重生归来,却惊人的发现,原来前世自己的陨落,竟并非偶然与意外!惊人的剑道天赋,恐怖的阵法大道,完美的炼丹术全能才是王道!任你惊才绝艳,不敌我随手一剑!剑锋所指,无人能阻。化身修罗,成就修罗大道,我非仙,却要戮仙伐神!...
郝主任您是怎么评价贝北月医生的?郝志平拿出硝酸甘油吃下去一粒,随即怒吼道老子的心脏病就是被那小子给吓出来的,别跟我提他!谷嘉琳医生您作为贝北月医生的老师,哦不,是他的学生,您是怎么评价他的?谷嘉琳脸色铁青的道他就是个彻头彻尾的渣男,奉劝全国,哦不,是全球的美女们离这个渣男越远越好。贝北月看到这些新闻不由撇撇嘴郝志平要点脸行不行?作为医学界的超级大佬,我就没听说过心脏病还能吓出来。还有谷嘉琳你个臭丫头你皮又痒痒了是怎么的?...
...
原本是新婚之夜,她却被丈夫和妹妹无情算计,被扔在陌生男人的床上一夜激情,而后被扫地出门,落魄无助。六年后,她强势回归,身边还多了一只奶里奶气的漂亮宝宝,为了保护妈咪,小小白只能屁颠屁颠的去找总裁爹地的庇护。那神秘的,冰山一般的男人,终究要被这个孩子以及他的妈咪所融化总裁Daddy,我是超级无敌小小白,请签收哦!...